Sperm Oil Replacements: Synthetic Wax Esters from Selectively Hydrogenated Soybean and Linseed Oils

E.W. BELL, L.E. GAST, and F.L. THOMAS, Northern Regional Research Center, ARS, USDA, Peoria, IL 61604, and R.E. KOOS, Eastern Regional Research Center, ARS, USDA, Philadelphia, PA 19118

ABSTRACT AND SUMMARY

Synthetic wax esters with properties similar to those of sperm whale oil have been prepared entirely from soybean and linseed oils. The synthesis required: (a) selective hydrogenation of the oils with copper-on-silica gel catalyst, (b) hydrogenolysis of fatty acids to fatty alcohols with copper-cadmiumchromium catalyst, and (c) esterification of hydrogenolysis products to yield predominantly long chain fatty esters which contained unsaturation in both the alcohol and acid moieties. Similarity of physical and chemical properties indicate that these wax esters are possible replacements for sperm oil. After sulfurization, the wax esters also have potential as extreme pressure lubricant additives.

INTRODUCTION

In 1970, the United States placed the sperm whale on the endangered species list and, in 1971, banned the import of its products. For this reason and because of shortages and increased prices of petrochemicals, we have investigated the preparation of sperm whale oil replacements from renewable agricultural sources.

Previously (1,2) we described esters of commercial partially hydrogenated soybean acids and of selectively hydrogenated soybean (SHSBA) and linseed acids (SHLSA) as possible replacements for sperm whale oil in lubricants. The saturated alcohols used in the preparation of these esters were derived mostly from petrochemicals.

This paper reports the preparation of wax esters entirely from soybean and linseed oils. The synthesis required the selective hydrogenation of the oils with copper-on-silica gel catalyst (3) at 170 C and 600 psi pressure followed by hydrogenolysis of the fatty acids, derived from the selectively hydrogenated oils (2), at 300 C and 2500-3000 psi pressure with a copper-cadmium-chromium catalyst. Conversion of fatty acids to fatty alcohols was 35-99+% with less than 5% increase in saturates and with 0-53% of diene reduced to monoene. The main side product of the hydrogenolysis was fatty alcohol-acid esters. Esterification of reaction product with a calculated amount of the corresponding fatty alcohols or fatty acids produced all wax esters. Kinematic viscosity data and smoke, flash, and fire points indicate that the wax esters from SHSBA (WESHSBA) and wax esters from SHLSA (WESHLSA) would be possible replacements for sperm oil. After sulfurization, these wax esters have potential as extreme pressure (EP) additives. EP additives prevent destructive metalto-metal contact in lubrication at either high pressure or temperature or both. WESHSBA and WESHLSA were sulfurized, tested, and evaluated as EP and antiwear additives.

EXPERIMENTAL PROCEDURES

Materials and Methods

Refined and bleached soybean and linseed oils came from commercial sources. Fatty acid compositions of oils as determined by gas liquid chromatography (GLC) of methyl esters were soybean: 10.7%, C16:0; 3.6%, C18:0; 25.2%, C18:1; 53.2%, C18:2; and 7.5%, C18:3; and linseed: 6.7%, C16:0; 3.7%, C18:0; 23%, C18:1; 15.6%, C18:2; and 51%, C18:3. A 15% copper-on-silica gel catalyst was prepared with copper nitrate trihydrate and heat activated as outlined by Koritala (3).

SHSBA and SHLSA were obtained from saponification of the parent selectively hydrogenated oils.

Other Reagents

Girdler (Chemetron Corp., Louisville, KY) T-1057 catalyst (ca. 40.8% CuO, 19.7% CdO, and 14.3% Cr_2O_3) was used for hydrogenolysis. Topaz S105 paraffin oil (Topaz S105) is produced by Atlantic Richfield Co., Philadelphia, PA.

Engine crankcase base oil (AA), automatic transmission base fluid (BB), RGO-100 gear lubricant (CC), 100/100 viscosity solvent-extracted neutral oil (DD), and commercial sperm oil replacements were provided by Southwest Research Institute (SWRI), San Antonio, TX.

Hydrogenation

Soybean and linseed oils were selectively hydrogenated with the copper-on-silica gel catalyst at 170 C and 600 psi pressure as described in a previous publication (2). Selectively hydrogenated soybean oil (SHSBO) contained 10.2%, C16:0; 4.2%, C18:0; 76.2%, C18:1, 9.4%, C18:2; 0.0%, conjugatable C18:3; and 37.3% isolated *trans* double bonds. Selectively hydrogenated linseed oil (SHLSO) contained 6.2%, C16:0; 4.6%, C18:0; 37.6%, C18:1; 48.0%, C18:2; 3.6%, C18:3; 5.0%, conjugatable C18:2; 1.5% conjugatable C18:3; and 44.4% isolated *trans* double bonds.

Hydrogenolysis

For a typical hydrogenolysis, a 1000 ml stainless-steel Magne-Dash autoclave was charged with 600 ml of SHSBA and 30 g of Girdler T-1057 catalyst per 100 ml acids. After the vessel was purged with nitrogen and pressurized with hydrogen to 3000 psi at room temperature, the charge was heated with stirring to 300 C. Hydrogen pressure was then maintained at 3000 psi for 5 hr. At this stage, hydrogen uptake was nil over a period of 0.25 hr. After cooling the autoclave to 80 C, the batch was filtered with filter aid and the product was analyzed. When necessary, trace amounts of metals (from catalyst) were removed by vacuum bleaching with 1% activated clay (4). Analysis of product (experiment 1, Table I) showed 97.9% fatty alcohols, 0.2% free fatty acids, and 1.9% wax esters. This standard procedure (SP) was followed in all hydrogenolyses.

Esterification

A portion of the above hydrogenolysis product (472.3 g, 1.74 mole alcohols) and 446 g (1.67 mole) precursory SHSBA were refluxed in the presence of 2 g of a catalyst consisting of three parts by weight of calcium acetate and one part of barium acetate with 500 ml of xylene. Theoretical amounts of water of esterification were removed by a Dean-Stark trap. The reaction mixture was washed with water, dried, and stripped of solvent. Infrared (IR) analysis

		30		572	512	559		523 L	266 0		593 V		, OF	י י
		ND30		1.45	1.46	1.45		1.46	1.46	1.46	1.45	1.4573		
		Iodine value	86.2	91.4	92.3	90.2	125.7	104.5	109.9	104.1	113.0	108.0		
	trans	Isolated (%)	37.3	37.5	40.2	37.5	44.4	50.4	51.5	53.5	54.3	44.5		
	2	Acids (%)	9.4	1	9.2	5.5	48.0	27.3	27.6	25.0	I	28.7		
	C18:2	Alcohols (%)	I	10.2	9.6	10.0	I	21.5	27.1	23.0	31.8	31.2		
	1	Acids (%)	76.2	74.5	75.6	75.0	37.6	62.2	60.6	64.7	ł	59.7		
alysis	C18:1	Alcohols (%)		74.3	74.2	75.0		63.2	58.6	62.9	54.9	52.7		
GLC analysis	0	Acids (%)	4.2	10.5	4.9	10.6	4.6	5.3	5.1	5.2	I	4.2		
	C18:0	Alcohols (%)		4.9	5.6	4.7		8.7	7.3	5.0	6.1	6.2		
	0	Acids (%)	10.2	15.0	10.3	8.9	6.2	6.2	6.7	5.1	1	7.4		
	C16:0	Alcohols (%)		10.6	10.6	10.3		6.5	6.9	9.1	7.2	6.6		
	Conversion acids	to alcohols (%)		6.79		95.6	I	35.0	ł	38.2	+66	48.8		
		as oleic (%)	100	0.23	0.58	1.3	100	39.6	1.3	24.0	0.0	7.2	bean acids.	
	Hours	at 300 C		5.0		4.5	I	4.5		6.5	6.75	4.5	ogenated sov	
	Catalvst	(g/100 ml acids)		Ś		S	I	1		1	10	s	aSHSBA: Selectively hydrogenated soybean acids	
	Acids	experiment no.	SHSBA ^a	SHSBA ^b 1	WESHSBAC	SHSBA ^b 2	SHLSAd	SHLSA ^e 3	WESHLSA	SHLSA ^d 4	SHLSA ^d 5	SHLSA ^b 6	aSHSBA: Sel	

dSHLSA: Selectively hydrogenated linseed acids containing 3.6% triene. cWESHSBA: Wax esters from selectively hydrogenated soybean acids. psi pressure. ^eConducted at 2500

WESHLSA: Wax esters from selectively hydrogenated linseed acids.

fatty acids, isolated fatty alcohols, and acetate esters of isolated fatty alcohols were compared for absorbance at 3310 cm⁻¹ (OH stretching); 1055 cm⁻¹ (C-O stretching for alcohol); 1735 cm⁻¹ (C-O stretching); and 1170 cm⁻¹ (C-O ester stretching). Conversion of acids to alcohols was calculated from weight percent of isolated acids and alcohols. For GLC analysis, acid fractions were converted to ethyl esters with 5% HCl in anhydrous ethanol and alcohol fractions were acetylated with acetic anhydride-pyridine reagent. Esters were analyzed on a 12ft-1/8 in. OD stainlesssteel column packed with 10% EGSS-X on Gas Chrom. P, 100-120 mesh (organosilicon polyester packing, Applied Science Laboratories, Inc., State College, PA) in a Model 1625 C Varian gas chromatograph or in a Model 5750 Hewlett-Packard gas chromatograph. The column was held at 170 C with a helium flow of 35 ml/min. IR spectra were recorded with a Beckman IR 8 spectrophotometer, both for thin films of 100% material and for carbon disulfide solutions of compounds. Ultraviolet (UV) spectra were obtained on a Beckman DB spectrophotometer. Iodine value (IV) was calculated from GLC analysis or determined by official AOCS method Cd 1-25 (6). Acid value (AV) and percentage-free fatty acids were determined by official AOCS methods Da 14-42 and Da 4a-42 (6), respectively.

Nonconjugatable diene and triene were determined by the difference between total diene and triene by GLC analyses and conjugatable diene and triene by UV analysis. Percentage of isolated trans double bonds was determined by AOCS Official Method Cd 14-61 (6).

Viscosities of wax esters were taken in Cannon-Fenske-Ostwald viscometers. The viscosity indices were obtained from viscosities at 100 and 210 F by ASTM Method D 2270 (7). The kinematic viscosity was converted to saybolt universal viscosity (SUS) according to ASTM Method D 2161 (7).

Smoke, flash, and fire points were measured by the Cleveland open flash cup, ASTM D 92-33 (7) and AOCS Official Method Cc 9a-48 (6).

Evaluation of Sulfurized Sperm Oil Candidates

As we reported previously (2), sperm oil candidates were sulfurized and evaluated under a research contract with SWRI. Although SWRI had overall responsibility for sulfurizing and evaluating our sperm oil candidates, part of the work was performed at the Eastern Regional Research Center, such as the four-ball EP test ASTM Method 2596 (7), four-ball wear test ASTM Method D 2266-67 (7), and freezing and pour points ASTM Method D 97-57 (7).

EP tests were made on a Precision Scientific four-ball EP tester (1440 rpm) in which loads were successively increased first in 20- and then 10-kg increments until an immediate seizure occurred, representing the weld point. Scar diameters were determined with a Precision four-ball wear tester. Samples were run for 1 hr at 600 rpm at 120 C and under a 50-kg load with and without additive. After the balls were cleaned with naphtha and hexane, scar diameters were measured under a microscope assembly #73607, with

260

For acid-alcohol analysis (Table I), wax esters and hydrogenolysis products were saponified with ethanolic potassium hydroxide and isolated, as detailed by Miwa (5). The reaction mixture was diluted with water and the fatty alcohol fraction was extracted with ethevl ether. The acid salts were acidified with dilute HCl, and the free fatty acids

were extracted with ethyl ether. Isolation of fatty acids from fatty alcohols was essentially complete as determined by GLC and IR analysis. IR spectra of neat hydrogenolysis products, isolated fatty acids, methyl esters of isolated

Analytical Methods

TABLE II

Physical Properties of Wax Esters of Selectively Hydrogenated Soybean and Linseed Acids

		Visco SUS		Viscosity	Poin	ts (F)	
Wax esters ^a	IV	100	210	index	Smoke	Flash	Fire
WESHSBA	112.6	135.7	47.8	211	320	536	698
WESHLSA	91.4	92.4	42.0	207	311	482	770
Sperm oil ^c	82.0	109.0	44.8	223	275- 325	490	655- 675

^aWax esters: WESHSBA, wax esters from selectively hydrogenated soybean acids; WESHLSA, wax esters from selectively hydrogenated linseed acids.

bSUS = Saybolt Universal viscosity.

^cWinterized at 45 F.

measuring grid (Precision Scientific).

The following tests were made by SWRI: Sulfur analysis, base oil solubility test, copper strip corrosion test ASTM Method D 130 (7), API gravity at 60 F ASTM Method D 287 (7), lead corrosion test FTM 5321 (8), foam test ASTM D 892 (7), emulsion test ASTM D 1401, N-pentane and benzene insolubles ASTM Method D 893-52 T (7), viscosity and viscosity index ASTM Method 2270 (7), and thermal stability test FTM 2504-1 (8).

RESULTS AND DISCUSSION

Previously described, selectively hydrogenated soybean and linseed acids containing increased amounts of monoene and nonconjugatable diene have unusual thermal and oxidative stability and yet retained sufficient reactivity to permit sulfurization (2). These acids were reduced to the corresponding alcohols in 35-99% yield with less than 5% increase in saturates and with 0-53% reduction of diene to monoene. Analysis of hydrogenolysis products, SHSBA, SHLSA, WESHSBA, and WESHLSA are given in Table I. The main side product of the hydrogenolysis was fatty alcohol-acid esters. GLC analysis of products showed the formation of trace amounts of hydrocarbons. However, head gases were not collected and analyzed for hydrocarbons. Because the selectivity of copper-cadmium catalyst in the reduction of unsaturated acids to unsaturated alcohols has been reported extensively (9-13), a comprehensive study of the reaction conditions was not made. The aim of this work was to prepare samples of wax esters entirely from soybean and linseed acids for comparison with sperm whale oil. Results of this work indicated that optimum conditions for hydrogenolysis was 5 g Girdler T-1057 catalyst per 100 ml of fatty acids, hydrogen pressure of 3000 psi, and a temperature of 300 C for 5 hr.

WESHSBA was obtained by the esterification of a calculated amount of SHSBA with reduction products from experiment 1. WESHLSA was obtained by the esterification of a calculated amount of alcohols from experiment 5 with reduction products from experiment 4. Also shown in Table I are the hydrogenolysis products from experiments no. 2, 3, and 6. These products were not used in evaluation work. Reduction products from experiment 6 contained 7.2% free fatty acids, 4.0% free fatty alcohols, and 88.8% wax esters. When this mixture was refluxed with xylene, and water of esterification was azeotropically removed, a product containing 97% wax esters and 3% Fatty acids was obtained.

The unusual chemical composition and physical properties of sperm oil make it useful in such diverse applications as cutting oils, fine cosmetics, leather-softening agents, and spinning lubricants in the textile industry. One large commercial source of oleyl alcohol in this country has been from the saponification of sperm whale oil. Oleyl alcohol

TABLE III

Physical	Properties	of	Sulfurized	Wax	Estersa
----------	------------	----	------------	-----	---------

Property	WESHSBA	WESHLSA	sso
Sulfur, %	10.5	10.8	11
Pour point, F	82	73	64
Freezing point, F	77	68	59
Flash point, F	468	460	464
Fire point, F	514	525	536
Saponification number	97.1	98.4	166.8
Neutral number	3.25	5.46	3.05
Viscosity at 210 F, SUS ^b	243	537	331

^aSulfurized wax esters: WESHSBA, wax esters from selectively hydrogenated soybean acids; WESHLSA, wax esters from selectively hydrogenated linseed acids; SSO, sulfurized sperm oil.

^bSUS = Saybolt Universal viscosity.

has many established uses and many more potential uses could be realized if it were more readily available on a large scale (13, 14).

In particular, oleyl alcohol is an intermediate for biodegradable detergents and in different types of surface active and detergent applications for household or industrial use. Although unsaturated fatty alcohols described in this work have geometrical and positional isomers, they should be considered as a source of monounsaturated alcohols. Physical properties of WESHSBA and WESHLSA (not winterized) were studied and compared with sperm oil winterized at 45 F (Table II). WESHSBA have smoke, flash, and fire points higher than those of sperm oil. WESHLSA have smoke, flash, and fire points comparable to those of sperm oil. WESHSBA and WESHLSA also have high viscosity indices (uniform viscosity over a broad temperature range).

In the lubrication of certain gear elements in automotive vehicles and various industrial machines, high pressure can cause a film of lubricant to rupture with subsequent damage to the machinery. For this reason, EP lubricants are fortified with additives to augment lubricity at either high pressures or temperatures, or both. EP lubricants should have good lubricity, good cooling properties, high film strength, good load-bearing ability, and miscibility with the usual types of base oils. Sulfurized sperm oil (SSO) satisfies these requirements and has been used extensively in EP additives. For this reason, WESHSBA and WESHLSA was sulfurized for evaluation as EP and antiwear additives.

The pour and freezing points of the sulfurized wax esters were higher than those of SSO (Table III); however, these values are comparable with those of several commercial sulfurized sperm oil replacements and may be improved by winterization.

The sulfurized wax esters were evaluated in base oils used in EP automotive and industrial applications. Performance of SSO replacements were compared (Table IV)

(kg) star (nm) corresion (mg/n ²) 100 210 index y 140 0.535 18 - 13.57 119 13.57 119 260 0.533 1A 30.5 133.48 15.20 119 260 0.553 1A 30.5 134.19 13.67 111 280 0.553 1A 30.5 134.19 13.67 111 280 0.553 1A 30.5 137.80 13.60 1118 280 0.593 1A 37.80 36.02 1113 113 280 0.591 1B 2.7 549.00 35.37 103 112 280 0.593 3A 36.1 20.07 113 20.3 280 0.593 3A 36.1 20.93 21.7 112 280 0.663 3A 24.7 549.00 35.37 113 280 0.603 3A 24.7 </th <th>additividy (b) set frame controls (b) set frame (c) (c)<</th> <th></th> <th>Sulfurized</th> <th>Extreme pressure Weld point</th> <th>Wear Average wear</th> <th>Connerc</th> <th>Lead</th> <th>Kinematic viscosityd Cs at F</th> <th>atic ityd F</th> <th>Viscosity</th> <th>API^e gravity (deoree API</th> <th></th> <th>Emulsion test (ml)</th> <th>5-</th> <th>Fo</th> <th>Foam test^f (ml)</th> <th>(Jn</th>	additividy (b) set frame controls (b) set frame (c) (c)<		Sulfurized	Extreme pressure Weld point	Wear Average wear	Connerc	Lead	Kinematic viscosityd Cs at F	atic ityd F	Viscosity	API ^e gravity (deoree API		Emulsion test (ml)	5-	Fo	Foam test ^f (ml)	(Jn
100 0453 18 - </th <th>100 045 18 -<th>Base oil^a</th><th>additive^b</th><th>(kg)</th><th>scar (mm)</th><th>corrosion</th><th>(mg/in^2)</th><th>100</th><th>210</th><th>index</th><th>60 F)</th><th>lio</th><th>H₂O</th><th>Emul</th><th>_</th><th>Π</th><th>Ξ</th></th>	100 045 18 - <th>Base oil^a</th> <th>additive^b</th> <th>(kg)</th> <th>scar (mm)</th> <th>corrosion</th> <th>(mg/in^2)</th> <th>100</th> <th>210</th> <th>index</th> <th>60 F)</th> <th>lio</th> <th>H₂O</th> <th>Emul</th> <th>_</th> <th>Π</th> <th>Ξ</th>	Base oil ^a	additive ^b	(kg)	scar (mm)	corrosion	(mg/in^2)	100	210	index	60 F)	lio	H ₂ O	Emul	_	Π	Ξ
200 0573 3A 0.2 13.57 119 28.8 1 4 75 0.0 100 200 200 0573 1A 3.5 13.57 119 28.8 0 <td>240 0575 AA 0.2 132.42 11.9 23.0 1 4 75 0.0 100 210 0575 AA 3.5 131.19 11.37 11.9 23.0 11.9 73.0 0.00 100 200 <td< td=""><td>AA</td><td>None</td><td>140</td><td>0.635</td><td>18</td><td>I</td><td> </td><td>1</td><td> 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></td<></td>	240 0575 AA 0.2 132.42 11.9 23.0 1 4 75 0.0 100 210 0575 AA 3.5 131.19 11.37 11.9 23.0 11.9 73.0 0.00 100 200 <td< td=""><td>AA</td><td>None</td><td>140</td><td>0.635</td><td>18</td><td>I</td><td> </td><td>1</td><td> 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></td<>	AA	None	140	0.635	18	I		1	1							1
20 0.53 3A 3B 15.2 119 27.8 1 8 70 0.00 200	200 0.530 3A 3B 15.20 119 27.8 1 8 70 0.00 200 200 0.535 1A 33 12.51 13.11 15.27 119 27.6 0.00 20		10% WESHSBA	240	0.575	3A	0.2	132.42	13.57	119	28.0	-	4	75	0-0	10-0	0.0
300 0.333 $1\Lambda/B$ 323 [131,19] 11,57 101 77.8 1 0 79 900 900 200 0.373 1 3 127.97 11,30 11,31 17,7 75 0 79 900 900 200 0.575 1 3 127.97 11,30 113 77.7 75 0 79 900 900 200 0.593 1 2 33.1 13.1 13.57 12 23.1 11 93.57 9 900 100 900 900 100 900 900 100 9	300 0.333 1.0, B 7.3 1.13 1.37 1.13 7.73 1.1 0 7.9 0.0 0.0 200 0.637 1.1 3.3 1.13.0 1.13 7.73 1.1 0 7.9 0.0 0.0 200 0.637 1.1 3.5 1.13.0 1.13 7.73 5.3 0.0		10% WESHLSA	260	0.550	ЗA	38.6	153.18	15.20	119	27.8	1	œ	70	0-0	20-0	0-0
200 0.430 1A 30.3 134.19 11.30 11.3 77.6 7 9 7.9 9.00 9.00 200 0.635 1B -	200 0.430 1A 30.3 134.19 11.30 11.1 77.6 7 9 4.9 2.00 200 0.575 1A 30.3 173.10 11.1 77.6 0 79 4.90 200 200 0.575 1B 5 35.3.0 11.3 77.7 7 0 79 4.90 200 200 0.593 1A 12.53 55.30 50.09 113 77.5 7 0 79 4.9 200 000 200 0.593 1A 7.14 112 25.3 13.9 14.9 14.1 112 25.3 6 19 200 000 100 200 0.603 3A 4.1 24.79 50.79 111 25.3 6 13 200 100 100 200 100 200 200 100 200 200 200 200 200 200 200 200		10% SSO	300	0.583	1A/B	22.5	131.19	13.57	101	27.8	T	0	79	0-0	40-0	0-0
2400.5751A3517.7913.2011377.7750791002002800.033282853.4611325.3212525244700002800.033185.553.4611325.321252526002800.033182.7543.5364.0711325.79244700002800.033182.7543.5310325.3710325.3792470002800.033182.7543.5320.325.3710325.3792470002800.033342.126.32611225.379112261935.071002800.0403828.620.7520.7511125.1935901002800.0453820.311125.1911261930.001002800.0553820.711125.191135.2901002002800.0563820.724.7720.7311325.29901002002800.0563820.720.7711125.231.4117261202001002800.0563820.720.755.7<	240 0.575 1A 35 17.79 13.20 117.97 13.20 117.97 13.20 117.97 13.20 13.2		10% Com Sub A	280	0.480	٩V	30.3	134.19	13.61	111	27.6	1	0	79	45-0	30-0	0-0
2100.6251B5538.635311241002000.0531A12753.3011223.112244100002000.0531A12753.3011123.71020000002000.0531A77.453.0311123.740200002000.0633A7.753.0311123.74020002000.0603A36.120.011125.1999901002000.0603A36.120.320.7711025.1999901002000.0633A3A34.420.0321.1125.1999901002000.0633A3A34.420.9720.9311125.224.7250.001002000.0633B20.027.645.0311125.224.7250.02001002000.0633B20.027.645.0311125.224.7250.02001002000.0633B20.027.645.0311125.22427.002001002000.0633B20.027.645.0311125.224.725.002001002000.053 <td< td=""><td>210 0.035 1B 5 53.6 5.3.0 11 5.3.3 21 5 34 41 0 0 0 220 0.533 13 5.3.4 4.1.4 112 5.3.3 13 23 34 41 0 0 00 230 0.531 13 2.4.3 54.3.0 112 55.3 13 23 34 0 0 00 00 230 0.531 13 2.4.3 54.3.0 11 25.3 6 13 0 0 00<td></td><td>10% Com Sub B</td><td>240</td><td>0.575</td><td>14</td><td>3.5</td><td>127.97</td><td>13.20</td><td>113</td><td>27.7</td><td>75</td><td>0</td><td>79</td><td>10-0</td><td>20-0</td><td>20-0</td></td></td<>	210 0.035 1B 5 53.6 5.3.0 11 5.3.3 21 5 34 41 0 0 0 220 0.533 13 5.3.4 4.1.4 112 5.3.3 13 23 34 41 0 0 00 230 0.531 13 2.4.3 54.3.0 112 55.3 13 23 34 0 0 00 00 230 0.531 13 2.4.3 54.3.0 11 25.3 6 13 0 0 00 <td></td> <td>10% Com Sub B</td> <td>240</td> <td>0.575</td> <td>14</td> <td>3.5</td> <td>127.97</td> <td>13.20</td> <td>113</td> <td>27.7</td> <td>75</td> <td>0</td> <td>79</td> <td>10-0</td> <td>20-0</td> <td>20-0</td>		10% Com Sub B	240	0.575	14	3.5	127.97	13.20	113	27.7	75	0	79	10-0	20-0	20-0
240 0.675 28 $5.36, 5.35, 6.34, 112$ $5.31, 31$ $21, 25, 34$ $41, 00$ 00 280 0.593 1A 12.7 $537, 80$ 50.2 112 52.3 24 47 00 00 280 0.593 1A 12.7 $537, 80$ 50.2 112 52.7 9 24 47 00 00 280 0.603 1B 7.7 $549, 00$ 55.7 112 25.7 9 24 47 00 100 280 0.603 3A 36.1 236.3 21.57 112 25.1 9 24 47 00 100 280 0.603 3B 36.1 236.3 21.57 112 25.7 9 24 47 00 100 280 0.603 3B 36.1 236.3 21.57 112 25.3 96.9 190 100 280 0.665 3B 20.0 27.78 5.03 21.73 112 22.2 47 500 100 280 0.670 3A 21.2 237.73 21.73 31.73 112 22.2 47 500 200 280 0.670 3A 21.2 27.73 5.73 113 21.2 31.67 112 22.6 400 280 0.670 34 21.2 27.73 5.73 113 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 <td< td=""><td>240 0675 2.B 5.3 53.4 1.1 5.3 2.1 2.5 3.4 0.0 0.0 280 0.593 1.A 7.7 549.4 56.0 111 2.5 3 4 4 0.0 0.0 280 0.593 1.A 7.7 549.0 55.7 112 2.5 3 3 3 0.0 0.0 280 0.693 3.A 5.1 5.3 0.3 3 3 0.0 0.0 280 0.683 3.A 5.0 3.5 112 5.7 112 5.7 12 5.0 10.0 0.0</td><td>BB</td><td>None</td><td>120</td><td>0.625</td><td>1B</td><td>1</td><td>i</td><td>ļ</td><td>l</td><td>ł</td><td>l</td><td>I</td><td>ł</td><td>I</td><td>-</td><td>I</td></td<>	240 0675 2.B 5.3 53.4 1.1 5.3 2.1 2.5 3.4 0.0 0.0 280 0.593 1.A 7.7 549.4 56.0 111 2.5 3 4 4 0.0 0.0 280 0.593 1.A 7.7 549.0 55.7 112 2.5 3 3 3 0.0 0.0 280 0.693 3.A 5.1 5.3 0.3 3 3 0.0 0.0 280 0.683 3.A 5.0 3.5 112 5.7 112 5.7 12 5.0 10.0 0.0	BB	None	120	0.625	1B	1	i	ļ	l	ł	l	I	ł	I	-	I
2000.590382.5364.1441.141122.51192.4410.00.02000.6631A12.754.3011325.345.31326.01002000.6631A27.454.3051.3710325.345.91010.02000.6631A3.154.120.011325.545990.02000.6633A3.17.11122.6.12.0.19960102000.6633A3.1.42.1.571112.6.12.6.19960112000.6633A3.1.42.2.592.0.751132.6.26132.901002000.6133A3.1.42.2.592.7.545.0.751132.6.26132.9.2001002000.6653A2.1.52.1.51112.6.26132.6.22.0010020110.00.6153A2.1.52.1.52.1.531.12.6.22.02.0010020110.00.6153A2.1.52.1.531.12.6.23.02.6.22.001002020.6553A2.0.22.0.311731.12.6.23.1.42.6.22.002.002030.6563A2.0.22.0.22.0.22.0.22	200 0.590 3B 33:3 43:44 41.14 112 35:7 15 44 47 00 00 200 0.633 1A 7:4 54:93 56:09 112 35:7 1 57 56:09 113 35:7 56:09 121 35:7 56:09 121 35:7 57 60 00 00 200 0.603 3A 36:1 25:3 55:09 121 35:7 57 9 37 3 00 100 200 0.603 3A 11.0 23:7 112 35:7 9		10% WESHSBA	240	0.675	2B	5.8	538.62	35.30	118	25.3	21	25	34	0-0	0-0	0-0
2000.6381A1A17,453,736.0211325,79244700002000.6331A27,753,730.000.6333790.00.02000.6033A36,125,0321,5711226,126193590.00.002000.6633B26,6230,3021,5711026,1996220,00.002000.6633B24,7720,9011325,26193570.00.002000.6633B24,7720,9011325,262020,01002000.6733B24,7720,9011325,262020,01002000.6353B24,7720,9011325,262020,01002000.6353B24,7720,9011325,262020,01102000.6353B20,020,111731,1322222000.6353B21,227,685,0911331,13222222000.6353B11227,685,0912531,11332222222000.63511812,627,685,0912531,1	280 0638 1A 77,7 537,20 5.007 113 25,7 9 24 47 00 00 280 0.653 1A 77,7 537,20 5.607 113 25,7 9 24 47 00 00 280 0.6501 1B 27,4 543,00 55,37 103 25,7 40 37 3 00 100 280 0.660 3B 26,1 250,3 21,57 110 25,1 8 11 61 510,0 100 100 200 0.615 3B 23,47 20,35 573 113 25,2 6 13 61 100 100 200 0.651 1B 12,4 23,475 20,35 113 25,2 6 13 61 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <td< td=""><td></td><td>10% WESHLSA</td><td>260</td><td>0.590</td><td>3B</td><td>25.3</td><td>643.44</td><td>41.14</td><td>112</td><td>25.1</td><td>15</td><td>24</td><td>41</td><td>0-0</td><td>0-0</td><td>0-0</td></td<>		10% WESHLSA	260	0.590	3B	25.3	643.44	41.14	112	25.1	15	24	41	0-0	0-0	0-0
32006533A2754.5.33.0912125.953.2330.00.001300.6033 2.7 $5.3.7$ 103 25.7 40 27 37.3 3 0.0 0.00 2000.6033 2.7 5.1 2.03 21.57 112 26.1 26 37 37 30.0 1000 2000.6063 28.6 273.59 21.57 110 26.1 26 9 9 62 20.0 100 2000.6763 3 3.4 4.6 237.7 20.94 110 26.2 6 12 20.0 100 2000.6663 3 2.46 5.04 117 26.2 6 12 26.0 200 2000.6663 $2.23.77$ 20.75 118 26.2 6 12 26.0 200 100 2000.65018 12.6 23.77 $3.27.6$ 5.04 117 31.1 3 27 260 200 2000.65018 12.6 27.78 5.06 123 31.4 12 27.60 200 200 2000.65018 12.6 27.78 5.06 123 31.4 12 26 200 200 2000.65018 12.6 5.778 5.06 2102 31.4 12 26 200 200 200 <td< td=""><td>200 0.651 3A 27.4 54.30 1.21 2.5.7 4.5 2.3 0.0 0.00 200 0.661 13 2.7.4 54.30 57 103 2.5.7 4.5 2.5.7 4.0 0.00 100 200 0.660 13 2.5.1 2.0.1 2.0.1 2.0.0 100 200 0.663 3A 36.1 2.7.5.9 2.1.57 112 2.5.1 2 4.6 2.0.0 100 200 0.663 3A 1.4 2.7.5.9 2.1.77 112 2.5.1 6 110.20 110.0 117 111 2.5.2 6 110.20 110.0 111 <td< td=""><td></td><td>10% SSO</td><td>280</td><td>0.628</td><td>1A</td><td>12.7</td><td>537.80</td><td>36.02</td><td>113</td><td>25.7</td><td>6</td><td>24</td><td>47</td><td>0-0</td><td>0-0</td><td>0-0</td></td<></td></td<>	200 0.651 3A 27.4 54.30 1.21 2.5.7 4.5 2.3 0.0 0.00 200 0.661 13 2.7.4 54.30 57 103 2.5.7 4.5 2.5.7 4.0 0.00 100 200 0.660 13 2.5.1 2.0.1 2.0.1 2.0.0 100 200 0.663 3A 36.1 2.7.5.9 2.1.57 112 2.5.1 2 4.6 2.0.0 100 200 0.663 3A 1.4 2.7.5.9 2.1.77 112 2.5.1 6 110.20 110.0 117 111 2.5.2 6 110.20 110.0 111 <td< td=""><td></td><td>10% SSO</td><td>280</td><td>0.628</td><td>1A</td><td>12.7</td><td>537.80</td><td>36.02</td><td>113</td><td>25.7</td><td>6</td><td>24</td><td>47</td><td>0-0</td><td>0-0</td><td>0-0</td></td<>		10% SSO	280	0.628	1A	12.7	537.80	36.02	113	25.7	6	24	47	0-0	0-0	0-0
240 0.591 1B 4.7 549.0 55.37 103 25.7 40 37 3 0.0 100 280 0.603 3 56.1 250.30 21.57 112 26.1 25 0.0 100 280 0.603 3A 36.1 250.30 21.57 110 26.1 2 37 3 0.0 100 280 0.603 3A 34.6 230.30 21.57 112 26.1 2 37 3 0.0 100 280 0.605 3A 24.5 20.3 113 2.53 6 13 37 60 100 200 0.605 3A 24.5 20.3 113 21.3 25.3 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <t< td=""><td>240 0.591 1B 4.7 54.0 5.37 103 2.57 40 37 3 0.0 100 200 0.600 3 36.1 26.0 24.7 25.1 26.1 26 9 55 0.0 100 200 0.603 3 36.1 26.3 21.77 112 26.1 26 9 9 61 510.0 100 200 0.613 3 3 11.0 25.1 6 15 51 61 510.0 100 100 100 100 110 111 25.1 66 150.0 100 110 100 100 100 100 100</td><td></td><td>10% Com Sub A</td><td>320</td><td>0.653</td><td>ЗA</td><td>27.4</td><td>543.52</td><td>36.09</td><td>121</td><td>25.9</td><td>S</td><td>22</td><td>53</td><td>0-0</td><td>0-0</td><td>0-0</td></t<>	240 0.591 1B 4.7 54.0 5.37 103 2.57 40 37 3 0.0 100 200 0.600 3 36.1 26.0 24.7 25.1 26.1 26 9 55 0.0 100 200 0.603 3 36.1 26.3 21.77 112 26.1 26 9 9 61 510.0 100 200 0.613 3 3 11.0 25.1 6 15 51 61 510.0 100 100 100 100 110 111 25.1 66 150.0 100 110 100 100 100 100 100		10% Com Sub A	320	0.653	ЗA	27.4	543.52	36.09	121	25.9	S	22	53	0-0	0-0	0-0
200 0.003	200 0.603		10% Com Sub B	240	0.591	1B	4.7	549.00	35.37	103	25.7	40	37	e	0-0	10-0	0-0
2400.4003A36.135.235.131.225.1996350.00.02600.6603A3A34.720.311025.19996330.00.02700.6133A3A4.6239.7620.7511325.199954510.01102800.6653B20.027.645.0411731.0362020.01002800.6653B20.027.645.0411731.0362020.020.02800.6673A21.237.735.3313531.11376010020.01003800.6673A21.237.2614031.331.11376010020.01003800.6701B12.227.735.5313531.113766230.020.01003000.943 <td>200 0400 3A 36.1 25.30 21.57 112 26.1 26 9 9 9 9 9 0 000 100 200 0640 3A 36.1 250.3 21.57 110 26.1 26 19 35 00 100 200 0647 3A 19.6 239.77 20.39 111 25.3 6 15 60 100 100 200 0667 3A 21.2 337.75 50.3 111 25.3 6 53.0 160 100</td> <td>22</td> <td>None</td> <td>130</td> <td>0.603</td> <td>i</td> <td>I</td> <td>I</td> <td>ł</td> <td>ł</td> <td>I</td> <td>1</td> <td>ł</td> <td>1</td> <td>I</td> <td>I</td> <td>I</td>	200 0400 3A 36.1 25.30 21.57 112 26.1 26 9 9 9 9 9 0 000 100 200 0640 3A 36.1 250.3 21.57 110 26.1 26 19 35 00 100 200 0647 3A 19.6 239.77 20.39 111 25.3 6 15 60 100 100 200 0667 3A 21.2 337.75 50.3 111 25.3 6 53.0 160 100	22	None	130	0.603	i	I	I	ł	ł	I	1	ł	1	I	I	I
260 0.660 3B 28.6 $2.72.59$ 2.071 110 26.1 962 20.0 000 270 0.0613 3A 240.77 20.971 110 25.1 96 230.0 1600 111 270 0.0613 3A 240.77 20.971 20.901 113 25.2 6 530.0 1600 110 270 0.0613 3A 240.77 20.971 20.931 110 25.2 6 230.0 1600 110 280 0.665 3B 21.0 27.64 5.04 117 31.0 36 20 240.7 280 0.677 1B 12.9 27.764 5.03 117 31.1 3 12 27.00 200 280 0.637 1B 12.9 27.764 5.03 31.4 12 27.200 200 280 0.637 1B 12.9 27.764 5.03 31.3 31.3 3 3 3 30.0 210 290 0.637 110 12.9 27.64 5.03 31.3 31.3 31.3 32.200 2000 200 200 0.637 110 12.9 27.64 5.03 31.3 31.3 31.3 32.200 2000 200 210 0.637 0.794 -100 0.637 0.637 0.637 0.637 0.637 0.637 210 0.642 -100 0.636 0.637	260 0.660 3B 28.6 72.59 2.07 110 2.6.1 9 6 2 200 0.00 260 0.645 3A 19.0 240.77 20.00 113 25.2 6 15.0 0.00 15.0 1600 1600 15.0 1600 110 2500 200 1600 170 31.1 31.0 31.0 300 111 31.1 <td< td=""><td></td><td>10% WESHSBA</td><td>240</td><td>0.400</td><td>3A</td><td>36.1</td><td>250.30</td><td>21.57</td><td>112</td><td>26.1</td><td>26</td><td>19</td><td>35</td><td>0-0</td><td>10-0</td><td>0-0</td></td<>		10% WESHSBA	240	0.400	3A	36.1	250.30	21.57	112	26.1	26	19	35	0-0	10-0	0-0
2600.6423A19.024.730.0911036.281161061061061001001002700.6133A4.6239.7620.731133.536156400800111010.000.6633B20.0027.445.0411731.05.65.0080012800.6673A21.233.025.7313531.11322222800.6701B12.927.735.0417731.231.113222222800.6701B12.927.735.0512031.11322222222222800.6701B10.827.665.0912531.11333	260 0.642 3A 19.0 240.77 50.4 110 25.2 8 11 6 15 60.0 110 25.2 8 11 6 30.0 110 25.2 6 15 60.0 100 100 100 110 25.2 6 15 60 30.0 11 110 110 25.2 6 200 100 110 25.2 6 15 60 200 100 110 25.2 6 200 100 110 25.2 6 200 100 110 25.2 31.1 13 21.2 32.02 31.3 31.1 13 2 20 200 200 200 200 200 200 200 200 200 200 21.2 32.02 31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3 30.0 30.0 30.0 <		10% WESHLSA	260	0.660	3B	28.6	272.59	22.77	110	26.1	6	6	62	20-0	0-0	0-0
280 0.675 3B 31.4 24.79 20.76 113 25.2 6 12 6 42.0 16.00 11 280 0.665 33 2 $ -$ <td>270 0.675 3B 31.4 244.79 20.0 113 35.9 6 20 54 420.0 160.0 11 270 0.613 3A 4.6 239.76 20.75 113 36.2 6 15 6 15 6 15 6 15 90.0 160.0 160.0 160.0 160.0 11 17 31.1 13 2 6 20 24 40.0 160.0 11 2 25.2 4 5.04 17 31.1 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 13 3 13 3 13 3 13 13 13 13</td> <td></td> <td>10% SSO</td> <td>260</td> <td>0.642</td> <td>ЗA</td> <td>19.0</td> <td>240.77</td> <td>20.94</td> <td>110</td> <td>26.2</td> <td>80</td> <td>11</td> <td>61</td> <td>510-20</td> <td>150-0</td> <td>180-0</td>	270 0.675 3B 31.4 244.79 20.0 113 35.9 6 20 54 420.0 160.0 11 270 0.613 3A 4.6 239.76 20.75 113 36.2 6 15 6 15 6 15 6 15 90.0 160.0 160.0 160.0 160.0 11 17 31.1 13 2 6 20 24 40.0 160.0 11 2 25.2 4 5.04 17 31.1 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 13 3 13 3 13 3 13 13 13 13		10% SSO	260	0.642	ЗA	19.0	240.77	20.94	110	26.2	80	11	61	510-20	150-0	180-0
2700.6133A4.6239.7620.7511826.261560530.080.0110 1020 $3H$ 21.20 27.64 5.04 117 31.0 36 20 24 55.0 200 280 0.6570 $3H$ 21.29 27.64 5.04 117 31.0 36 200 200 200 300 0.670 $1H$ 12.2 27.78 5.03 133 31.4 12 27 66 1000 200 300 0.673 $1H$ 12.6 27.78 5.09 125 31.1 13 7 66 1000 200 300 0.673 $1H$ 12.6 27.78 5.09 125 31.1 13 3 24 2200 200 200 0.673 27.68 5.09 125 31.1 31 3 34 2200 300 11 280 0.675 27.68 5.09 125 31.1 3 3 2 2 2 280 0.675 27.68 5.09 125 31.1 3 3 200 300 300 300 280 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 280 0.676 0.675 0.675 0.675 0.675 0.675 0.675 0.675 200 0.676 0.676 0.675 0.675 0.675 </td <td>270 0.613 3A 4.6 239.76 20.75 118 2.6.2 6 15 60 530-0 80-0 1 110 1.0265 3 2 2.0 17 31-0 35 20 27-0 29-0 280 0.657 3A 2.12 32.02 5.73 135 31.1 13 7 60 100-0 20-0<!--</td--><td></td><td>10% Com Sub A</td><td>280</td><td>0.675</td><td>3B</td><td>31.4</td><td>244.79</td><td>20.90</td><td>113</td><td>25.9</td><td>9</td><td>20</td><td>54</td><td>420-0</td><td>160-0</td><td>120-0</td></td>	270 0.613 3A 4.6 239.76 20.75 118 2.6.2 6 15 60 530-0 80-0 1 110 1.0265 3 2 2.0 17 31-0 35 20 27-0 29-0 280 0.657 3A 2.12 32.02 5.73 135 31.1 13 7 60 100-0 20-0 </td <td></td> <td>10% Com Sub A</td> <td>280</td> <td>0.675</td> <td>3B</td> <td>31.4</td> <td>244.79</td> <td>20.90</td> <td>113</td> <td>25.9</td> <td>9</td> <td>20</td> <td>54</td> <td>420-0</td> <td>160-0</td> <td>120-0</td>		10% Com Sub A	280	0.675	3B	31.4	244.79	20.90	113	25.9	9	20	54	420-0	160-0	120-0
110 1.020 3 20.0 27.64 5.04 117 31.0 36 20 $20-0$ $20-0$ 280 0.657 $3A$ 21.2 27.08 5.03 117 31.1 36 $20-0$ $20-0$ 280 0.670 $1B$ 12.6 27.78 5.05 122 31.3 12 26 $200-0$ $20-0$ 270 0.670 $1B$ 12.6 27.78 5.05 122 31.3 31.2 26 $200-0$ $20-0$ 280 0.794 280 0.642 280 0.642 280 0.658 5.09 126 31.3 31.3 31.3 32.200 30.0 11 280 0.658 0.658 0.658 0.658 0.658 0.656 0.656 0.656 290 0.553 0.558 0.558 0.558 0.556 0.566 0.523 0.523 200 0.523 0.5670 0.5670 0.5670 0.5670 0.5670 0.5670 200 0.5670 0.5670 0.5670 0.5670 0.5670 0.590 0.570 200 0.5884 0.5884 0.6870 0.5884 0.6870 0.670 0.670 200 0.5670	110 1.020 3 20.0 27.64 5.04 117 31.0 36 20 24 25.0 40.0 280 0.6570 3A 21.2 27.04 5.04 117 31.0 36 20 24.0 20.0		10% Com Sub B	270	0.613	ЗA	4.6	239.76	20.75	118	26.2	9	15	60	530-0	80-0	110-0
280 0.665 3B 20.0 27.64 5.04 117 31.0 36 27 66 25.0 20.0 11.1 31.3 31.3 31.3 31.3 31.3 31.3 31.3 21.0 20.0 20.0 20.0 20.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 20.0 11.1 31.1 31.3 31.1 31.3 31.3 31.3 21.0 20.0 21.	280 0.665 3B 20.0 27.64 5.04 117 31.0 36 27 66 25.00 20.0 300 0.697 1B 12.2 37.78 5.05 12.3 31.1 13 3 13 3 13 23 29.0 20.0 21.0 20.0 100 11 13 7 66 20.0 20.0 11 270 0.673 5.09 12.6 5.773 5.09 12.5 31.1 13 3 13 3 13 230.0 20.0 10 1 2700 0.573 5.09 12.5 5.09 12.5 31.1 13 3 13 3 3 230.0 0.0 1 1 230.0 10 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1	DD	None	110	1.020	I	ł	I	}	ļ	I	t	I	I	I	I	1
280 0.670 3A 212 32.02 5.73 135 31.1 13 7 60 1000 200 300 0.630 1B 12.9 37.78 5.05 122 31.3 31.3 31.3 31.3 32 36 2300 200 11 270 0.630 1B 12.9 37.78 5.05 122 31.3 31.3 32 36 2300 200 1 280 0.753 5.09 125 31.1 5 0 7 280 30.0 1 280 0.673 - <td< td=""><td>280 0.670 3A 212 32.02 5.73 135 31.1 13 7 60 100-0 20-0 360 0.637 1B 12.9 27.68 5.09 122 31.3 3 13 3 3 2 60 100-0 20-0 1 270 0.642 - <td< td=""><td></td><td>10% WESHSBA</td><td>280</td><td>0.665</td><td>3B</td><td>20.0</td><td>27.64</td><td>5.04</td><td>117</td><td>31.0</td><td>36</td><td>20</td><td>24</td><td>25-0</td><td>40-0</td><td>0-0</td></td<></td></td<>	280 0.670 3A 212 32.02 5.73 135 31.1 13 7 60 100-0 20-0 360 0.637 1B 12.9 27.68 5.09 122 31.3 3 13 3 3 2 60 100-0 20-0 1 270 0.642 - <td< td=""><td></td><td>10% WESHSBA</td><td>280</td><td>0.665</td><td>3B</td><td>20.0</td><td>27.64</td><td>5.04</td><td>117</td><td>31.0</td><td>36</td><td>20</td><td>24</td><td>25-0</td><td>40-0</td><td>0-0</td></td<>		10% WESHSBA	280	0.665	3B	20.0	27.64	5.04	117	31.0	36	20	24	25-0	40-0	0-0
300 0.697 1B 12.9 27.78 5.05 123 31.4 12 250.0 20.0 12 270 0.6713 1B 12.6 27.73 5.05 140 31.3 33 13 34 20.0 20.0 10 120 0.773 1B 12.6 27.73 5.05 120 31.3 33 13 34 20.0 10 1 280 0.643 - <td>300 0.697 18 12.9 37.78 5.05 123 31.4 12 5.500 2000 12 270 0.610 18 12.6 27.72 5.26 140 31.1 3 13 3 3 3 2000 2000 1 270 0.620 18 12.6 27.72 5.25 140 31.1 3 13 3 3 300 2000 2000 1 280 0.643 -</td> <td></td> <td>10% WESHLSA</td> <td>280</td> <td>0.670</td> <td>3A</td> <td>21.2</td> <td>32.02</td> <td>5.73</td> <td>135</td> <td>31.1</td> <td>13</td> <td>2</td> <td>60</td> <td>100-0</td> <td>20-0</td> <td>95-0</td>	300 0.697 18 12.9 37.78 5.05 123 31.4 12 5.500 2000 12 270 0.610 18 12.6 27.72 5.26 140 31.1 3 13 3 3 3 2000 2000 1 270 0.620 18 12.6 27.72 5.25 140 31.1 3 13 3 3 300 2000 2000 1 280 0.643 -		10% WESHLSA	280	0.670	3A	21.2	32.02	5.73	135	31.1	13	2	60	100-0	20-0	95-0
360 0.713 1B 12.6 27.72 5.26 140 31.3 33 13 34 220-0 20-0 1 270 0.620 1B 16.8 27.68 5.09 125 31.1 5 0 75 280-0 30-0 1 280 0.675 - <td>360 0.713 1B 12.6 27.72 5.26 140 31.3 33 13 34 220.0 20.0 1 270 0.6520 1B 16.8 27.68 5.09 125 31.1 5 0 75 280.0 30.0 1 280 0.6573 -<!--</td--><td></td><td>10% SSO</td><td>300</td><td>0.697</td><td>1B</td><td>12.9</td><td>27.78</td><td>5.05</td><td>122</td><td>31.4</td><td>12</td><td>7</td><td>66</td><td>250-0</td><td>20-0</td><td>80-0</td></td>	360 0.713 1B 12.6 27.72 5.26 140 31.3 33 13 34 220.0 20.0 1 270 0.6520 1B 16.8 27.68 5.09 125 31.1 5 0 75 280.0 30.0 1 280 0.6573 - </td <td></td> <td>10% SSO</td> <td>300</td> <td>0.697</td> <td>1B</td> <td>12.9</td> <td>27.78</td> <td>5.05</td> <td>122</td> <td>31.4</td> <td>12</td> <td>7</td> <td>66</td> <td>250-0</td> <td>20-0</td> <td>80-0</td>		10% SSO	300	0.697	1B	12.9	27.78	5.05	122	31.4	12	7	66	250-0	20-0	80-0
270 0.620 1B 16.8 27.68 5.09 125 31.1 5 0 75 280-0 30-0 1 280 0.673 - <td>270 0.620 1B 16.8 27.68 5.09 125 31.1 5 0 75 280-0 30-0 1 280 0.673 -<td></td><td>10% Com Sub A</td><td>360</td><td>0.713</td><td>1B</td><td>12.6</td><td>27.72</td><td>5.26</td><td>140</td><td>31.3</td><td>33</td><td>13</td><td>34</td><td>220-0</td><td>20-0</td><td>100-0</td></td>	270 0.620 1B 16.8 27.68 5.09 125 31.1 5 0 75 280-0 30-0 1 280 0.673 - <td></td> <td>10% Com Sub A</td> <td>360</td> <td>0.713</td> <td>1B</td> <td>12.6</td> <td>27.72</td> <td>5.26</td> <td>140</td> <td>31.3</td> <td>33</td> <td>13</td> <td>34</td> <td>220-0</td> <td>20-0</td> <td>100-0</td>		10% Com Sub A	360	0.713	1B	12.6	27.72	5.26	140	31.3	33	13	34	220-0	20-0	100-0
120 0.794 - 280 0.642 - 280 0.675 - 280 0.668 - 280 0.553 - 280 0.553 - 280 0.553 - 230 0.553 - 300 0.553 - 300 0.553 - 320 0.506 - 230 0.506 - 230 0.506 - 231 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.504 <td< td=""><td>120 0.794 - 280 0.642 - 280 0.675 - 280 0.675 - 280 0.668 - 280 0.553 - 280 0.553 - 280 0.553 - 300 0.553 - 300 0.553 - 300 0.553 - 300 0.553 - 320 0.500 - 220 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 280 0.500 - 280 0.570 - 280 0.570 - 280 0.570 - 280 0.570 - 280 0.570 - 280 0.581 - 3807 - -<</td><td>E</td><td>10% Com Sub B</td><td>270</td><td>0.620</td><td>1B</td><td>16.8</td><td>27.68</td><td>5.09</td><td>125</td><td>31.1</td><td>5</td><td>0</td><td>75</td><td>280-0</td><td>30-0</td><td>100-0</td></td<>	120 0.794 - 280 0.642 - 280 0.675 - 280 0.675 - 280 0.668 - 280 0.553 - 280 0.553 - 280 0.553 - 300 0.553 - 300 0.553 - 300 0.553 - 300 0.553 - 320 0.500 - 220 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 280 0.500 - 280 0.570 - 280 0.570 - 280 0.570 - 280 0.570 - 280 0.570 - 280 0.581 - 3807 - -<	E	10% Com Sub B	270	0.620	1B	16.8	27.68	5.09	125	31.1	5	0	75	280-0	30-0	100-0
120 0.794 - 280 0.642 - 280 0.675 - 280 0.658 - 280 0.553 - 280 0.553 - 280 0.553 - 230 0.558 - 300 0.553 - 310 0.558 - 320 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 230 0.500 - 258A, wax esters from selectively hydrogenated so - ASTM Method D 130-65: 1, slight tarmish; 2, medi -	120 0.794 - 280 0.642 - 280 0.642 - 280 0.658 - 280 0.658 - 280 0.553 - 280 0.568 - 280 0.553 - 280 0.553 - 300 0.558 - 310 0.506 - 280 0.500 - 280 0.500 - 280 0.500 - 280 0.500 - 280 0.500 - 280 0.670 - 280 0.670 - 280 0.670 - 280 0.671 - 281 wax esters from selectively hydrogenated so 4STM Method D 130-65: 1, slight tarnish; 2, medi 10.7 - 803 - 2803 - 2803 -	Topaz	2														
280 0.042 280 0.675 280 0.553 280 0.553 300 0.558 300 0.503 320 0.500 230 0.596 230 0.596 230 0.596 28A, wax esters from selectively hydrogenated so SBA, wax esters from selectively hydrogenated so ASTM Method D 130-65: 1, slight tarnish; 2, medi	 280 0.675 280 0.678 280 0.553 280 0.553 280 0.553 280 0.523 300 0.523 200 0.506 320 0.506 320 0.596 280 0.506 280 0.506 280 0.670 280 0.670 281 vax esters from selectively hydrogenated so 4STM Method D 130-65: 1, slight tarnish; 2, medi finstitute. 	\$010	None	071	0.794	i	I	ł	١	١	I	l	I	I	I	I	I
200 0.668 280 0.568 230 0.558 300 0.558 300 0.558 320 0.606 320 0.606 320 0.500 230 0.500 280 0.570 28A, wax esters from selectively hydrogenated so SBA, wax esters from selectively hydrogenated so ASTM Method D 130-65: 1, slight tarnish; 2, medi finstitute.	250 0.668 260 0.668 280 0.553 230 0.553 300 0.523 320 0.606 320 0.606 230 0.506 230 0.506 230 0.506 230 0.670 280, wax esters from selectively hydrogenated so 45TM Method D 130-65: 1, slight tarnish; 2, medi finstitute.		5% WESHEDA	007	740.0												
280 0.553 230 0.553 230 0.558 300 0.558 320 0.606 320 0.606 230 0.506 230 0.500 280 0.570 28A, wax esters from selectively hydrogenated so SBA, wax esters from selectively hydrogenated so ASTM Method D 130-65: 1, slight tarnish; 2, medi	 280 0.553 230 0.558 230 0.558 230 0.506 220 0.606 220 0.506 230 0.506 230 0.506 280 0.506 280 0.670 280 0.670 280, 0.6		10% WESHEDA	260	C/070												
230 0.558 300 0.558 320 0.623 220 0.606 230 0.500 230 0.596 280 0.596 280, 0.596 280, wax esters from selectively hydrogenated so SBA, wax esters from selectively hydrogenated so ASTM Method D 130-65: 1, slight tarnish; 2, medi finstitute.	230 0.558 300 0.653 320 0.606 320 0.606 320 0.500 230 0.500 230 0.500 230 0.506 230 0.670 230 0.670 230 0.670 230 0.670 230 0.670 230 0.670 230 0.670 230 0.670 230 0.670 230 0.670 230 0.670 230 0.596 28A, wax esters from selectively hydrogenated so ASTM Method D 130-65: 1, slight tarnish; 2, medi Institute. 10.7		IDO WESHST A	280	0.553											•	
300 0.623 220 0.606 320 0.500 230 0.596 280 0.596 280 0.670 esearch Institute's (SWR1) crankcase base oil; BI raffin oil (similar to 102 paraffin oil). SBA, wax esters from selectively hydrogenated so ASTM Method D 130-65: 1, slight tarnish; 2, medi Institute.	 300 0.623 220 0.606 220 0.606 230 0.596 230 0.596 280 0.596 280 0.670 esearch Institute's (SWR1) crankcase base oil; Bl raffin oil (similar to 102 paraffin oil). SBA, wax esters from selectively hydrogenated so ASTM Method D 130-65: 1, slight tarnish; 2, medi Institute. 		S% SSO	230	0.558												
220 0.606 320 0.500 230 0.596 280 0.596 esearch Institute's (SWR1) crankcase base oil; Bl raffin oil (similar to 102 paraffin oil). SBA, wax esters from selectively hydrogenated so ASTM Method D 130-65: 1, slight tarnish; 2, medi Institute.	 220 0.606 320 0.500 320 0.596 230 0.570 280 0.670 csearch Institute's (SWR1) crankcase base oil; Blaffin oil (similar to 102 paraffin oil). SBA, wax esters from selectively hydrogenated so ASTM Method D 130-65: 1, slight tarnish; 2, medi Institute. 		10% SSO	300	0.623												
3200.5002300.5962800.670affin oil (similar to 102 paraffin oil).SBA, wax esters from selectively hydrogenated soASTM Method D 130-65: 1, slight tarnish; 2, mediInstitute.	 320 0.500 230 0.596 230 0.596 280 0.670 esearch Institute's (SWRI) crankcase base oil; Bleatin oil (similar to 102 paraffin oil). SBA, wax esters from selectively hydrogenated so ASTM Method D 130-65: 1, slight tarnish; 2, medi Institute. 		5% Com Sub A	220	0.606												
2300.5962800.6702800.670cesearch Institute's (SWRI) crankcase base oil; BIraffin oil (similar to 102 paraffin oil).SBA, wax esters from selectively hydrogenated soSSTM Method D 130-65: 1, slight tarnish; 2, mediInstitute.	2.30 0.596 2.80 0.670 (escarch Institute's (SWRI) crankcase base oil; Bl affin oil (similar to 102 paraffin oil). SBA, wax esters from selectively hydrogenated so ASTM Method D 130-65: 1, slight tarnish; 2, medi finstitute.		10% Com Sub A	320	0.500												
280 0.670 (escarch Institute's (SWRI) crankcase base oil; Bl raffin oil (similar to 102 paraffin oil). SBA, wax esters from selectively hydrogenated so ASTM Method D 130-65: 1, slight tarnish; 2, medi Institute.	280 0.670 esearch Institute's (SWRI) crankcase base oil; Bl raffin oil (similar to 102 paraffin oil). SBA, wax esters from selectively hydrogenated so ASTM Method D 130-65: 1, slight tarnish; 2, medi institute.		5% Com Sub B	230	0.596												
esearch Institute's (SWRI) crankcase base oil; Bl raffin oil (similar to 102 paraffin oil). SBA, wax esters from selectively hydrogenated so ASTM Method D 130-65: 1, slight tarnish; 2, medi Institute.	esearch Institute's (SWRI) crankcase base oil; Blaffin oil (similar to 102 paraffin oil). SBA, wax esters from selectively hydrogenated so ASTM Method D 130-65: 1, slight tarnish; 2, medi Institute.		10% Com Sub B	280	0.670												
oub b, commercial substitute b. Copper strip corrosion test ASTM Method D 130-65: 1, slight tarnish; 2, medium tarnish; 4, corrosion. dCs, Centistokes. ^e API = American Petroleum Institute.	oud b, commercial substitute b. Copper strip corrosion test ASTM Method D 130-65: 1, slight tarnish; 2, medium tarnish; 4, corrosion. dCs, Centistokes. eAPI = American Petroleum Institute. froam test ASTM Method D 807 securation of highhing 5 min and settling 10 min: 1 at 75 F after collansing the foam	^a Base oi oil; Topaz S ^b Sulfuri	ils: AA, Southwest I 105, Topaz S105 pa zed additives: WESH	Research Instit raffin oil (simil ISBA, wax este	ute's (SWRI) crai llar to 102 paraffi ers from selectivel	nkcase base c n oil). ly hydrogenat	il; BB, SWRI ed soybean ac	transmissi ds; WESH	on base flu LSA, wax e	iid; CC, SWRI esters from sele	(RGO-100) gear 1. ectively hydrogen.	ubricant; I ated linsee	DD, Mayco ed acids; Co	's (100/100 2m Sub A, e	0 vis) solven commercial	t extracted substitute	l neutral A; Com
dCs, Centistokes. ^e API = American Petroleum Institute.	dCs, Centistokes. ^e API = American Petroleum Institute. ^f Fram test ACTM Method D 807 servience of hithhline 5 min and settline 10 min: 1 at 75 F after collansine the fram	Copper	strip corrosion test	ASTM Method	l D 130-65: 1, slig	ht tarnish; 2,	medium tarn	ish; 3, dark	: tarnish; 4,	corrosion.							
^e API = American Petroleum Institute.	^e API = American Petroleum Institute. Froam test ASTM Method D 802 servinges of highling 5 min and settling 10 min : 1 at 75 F : 11 at 75 F after collansing the fram	^d Cs, Cer	ıtistokes.														
	fFrom test ASTM Method D 802 services of highling 5 min and settling 10 min : 1 at 75 F: 11 at 76 F after collansing the from	f = IdVa	American Petroleum	Institute.													

TABLE IV

VOL. 54

in base oils AA, BB, CC, DD, and Topaz S 105. SSO and two commercial SSO substitutes (Com Sub A, Com Sub B) are included for further comparison. Most commercial sulfurized replacements are sold as "packages" containing a number of additives, such as viscosity improver, metal deactivator, antioxidants, and EP agents. The sulfurized wax esters from hydrogenated fatty acids contained no additives nor were they winterized before sulfurization. SSO replacements were added to each base oil at 10% by weight concentration levels. The blended oils were stored for 24 hr at 35 F, 24 hr at room temperature, 24 hr at 35 F, and then 1 mo at room temperature. All sulfurized materials had good solubilities in all the base oils.

Both wear and EP test data were obtained with sulfurized WESHSBA and WESHLSA as 10% by weight concentration in all base oils. Wear and EP tests for SSO, Com Sub A, and Com Sub B on the basis of 10% by weight concentration in all the base oils are given for comparison. Although data suggest that Topaz S 105 was a reasonable choice for screening candidate materials, replacements performed differently in each of the base oils; therefore, the choice of a given additive will depend on its intended application. All sulfurized products showed both EP characteristics and antiwear properties. At 5% concentration in Topaz S105, sulfurized additives WESHSBA and WESHLSA exhibited EP properties better than those of SSO or of Com Sub A and B. SSO, Com Sub A and B showed better antiwear properties than the wax esters.

Although the sulfurized wax esters appeared to be effective EP agents, they gave a copper corrosion test of 2B to 3B. EP additives should have a copper corrosion rating of 2C or better. The higher than desired corrosion ratings and antiwear values may have been caused either by a too high sulfurization level or by sulfur-contained impurities, or both. Copper corrosion tests run with wax esters as 10% blend in base oils AA, BB, CC, and DD showed near acceptable values as did SSO in base oil CC, and Com Sub A in base oils AA, BB, and CC. Perhaps with proper adjustment of either sulfur concentration or addition of metal-deactivators, or both, the additives would possibly improve greatly in antiwear, and anti-copper corrosion properties.

Sulfurized WESHLSA had higher than expected lead corrosion in base oils AA, BB, and CC; comparable to that of Com Sub A. In base oils AA and BB, sulfurized WESHSBA exhibited lead corrosion tendencies much less than did SSO or Com Sub A and B.

Values of kinematic viscosity data, viscosity indices, and API gravities of all materials tested as 10% blends in the four base oils are within most industrial and military specification for lubricants containing EP additives.

In summarizing emulsion test data of additives as 10% blends in the four base oils, all additives form stable emulsions with the four base oils and are suitable in this regard for marine engine lubrication and cutting oils. Candidate additives in base oils BB and CC exhibit excellent deemulsification properties and should find application in forced-feed circulating lubrication systems, provided that the other physical and chemical properties required of such systems are also met.

Foam test data of additives as 10% blends in the four base oils demonstrate that all candidate additives met test requirements. Sulfurized WESHSBA and WESHLSA showed less foaming tendencies than did SSO or Com Sub A and B in base oils AA, CC, and DD. In base oil BB, sulfurized WESHSBA and WESHLSA, SSO and Com Sub A showed no foam tendencies.

Thermal stability test FTM 2504-1 was made with 10% by weight additives concentration in base oil CC. The sulfurized WESHSBA blend failed the test because the increase in viscosity was higher than permissible (100%). The sulfurized WESHLSA blend polymerized after 40 hr of test. "Although this material is apparently not suitable for engine gear application, it did seem to perform reasonably well otherwise and may find application as an industrial lubricant requiring lower than 300 F operating temperature or thermal stability.

Since most lubricants are formulated with a number of additives, each having certain performance characteristics, sperm oil replacement candidates could not be expected to meet all lubricant specifications. However, the sulfurized candidate additives have good EP properties and are superior to SSO and commercial additives in foaming tendencies. Thermal stability and copper and lead corrosion tendencies exhibited by the wax esters are less than desired, but can be improved by including either an appropriate metal deactivator or antioxidant, or both.

ACKNOWLEDGMENTS

E. Dimitroff, Southwest Research Institute, Interpreted evaluations; J.A. Rothfus contributed helpful discussions and made contractual arrangements; G.E. McManis (deceased) performed IR and UV analyses; R.L. Reichert assisted with hydrogenations; and A.W. Schwab provided selectively hydrogenated linseed oil.

REFERENCES

- 1. Bell, E.W., J.C. Cowan, and L.E. Gast, JAOCS 49:552 (1972).
- 2. Bell, E.W., J.C. Cowan, L.E. Gast, and R.E. Koos, Ibid. 53:511
- (1976). 3. Koritala, S., Ibid. 49:83 (1972).
- 4. Schwab, A.W., and H.J. Dutton, Ibid. 25:57 (1948).
- Miwa, T.K., In "Jojoba and Its Uses," Proc. Int. Conf., University of Arizona, Tuscon, eds. Edward F. Hasse and William G. McGinnies, June 1972, pp. 61-72.
- "Official and Tentative Methods of the American Oil Chemists" Society," Vol. 1, Third Edition, AOCS, Champaign, IL, 1964.
- 7. American Society for Testing and Materials, Part 17, Revised to 1967, Philadelphia, PA.
- 8. Federal Test Methods Standard No. 791B, U.S. Federal Supply Service, Washington, DC.
- 9. Pantulu, A.J., and K.T. Achaya, JAOCS 41:511 (1964).
- 10. Stouthamer, B., and J.C. Vlugter, Ibid. 42:646 (1965).
- 11. Richter, J.D., and P.J. Van Den Berg, Ibid. 46:158 (1969).
- 12. Richter, J.D., and P.J. Van Den Berg, Ibid. 46:164 (1969).
- Klonowski, R.S., T.W. Findley, C.M. Josefson, and A.J. Stirton, Ibid. 47:326 (1970).
- 14. Hembrough, G.R., Chem. Prod. 17:378 (1954).

[Received December 16, 1976]